Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
100  structures 2398  species 0  interactions 7419  sequences 51  architectures

Family: GST_C_2 (PF13410)

Summary: Glutathione S-transferase, C-terminal domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Glutathione S-transferase, C-terminal domain". More...

Glutathione S-transferase, C-terminal domain Edit Wikipedia article

Glutathione S-transferase, C-terminal domain
PDB 1z9h EBI.jpg
Identifiers
Symbol GST_C
Pfam PF00043
InterPro IPR004046
SCOP 2gst
SUPERFAMILY 2gst
OPM superfamily 139
OPM protein 1z9h
CDD cd00299

Glutathione S-transferase, C-terminal domain is a structural domain of glutathione S-transferase (GST).

GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants.

The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes.

Biological function and classification[edit]

In eukaryotes, glutathione S-transferases (GSTs) participate in the detoxification of reactive electrophilic compounds by catalysing their conjugation to glutathione. The GST domain is also found in S-crystallins from squid, and proteins with no known GST activity, such as eukaryotic elongation factors 1-gamma and the HSP26 family of stress-related proteins, which include auxin-regulated proteins in plants and stringent starvation proteins in Escherichia coli. The major lens polypeptide of cephalopods is also a GST.[1][2][3][4]

Bacterial GSTs of known function often have a specific, growth-supporting role in biodegradative metabolism: epoxide ring opening and tetrachlorohydroquinone reductive dehalogenation are two examples of the reactions catalysed by these bacterial GSTs. Some regulatory proteins, like the stringent starvation proteins, also belong to the GST family.[5][6] GST seems to be absent from Archaea in which gamma-glutamylcysteine substitute to glutathione as major thiol.

Oligomerization[edit]

Glutathione S-transferases form homodimers, but in eukaryotes can also form heterodimers of the A1 and A2 or YC1 and YC2 subunits. The homodimeric enzymes display a conserved structural fold. Each monomer is composed of a distinct N-terminal sub-domain, which adopts the thioredoxin fold, and a C-terminal all-helical sub-domain. This entry is the C-terminal domain.

Human proteins containing this domain[edit]

EEF1E1; EEF1G; GDAP1; GSTA1; GSTA2; GSTA3; GSTA4; GSTA5; GSTM1; GSTM2; GSTM3; GSTM4; GSTM5; GSTO1; GSTP1; GSTT1; GSTT2; GSTZ1; MARS; PGDS; PTGDS2; PTGES2; VARS;

References[edit]

  1. ^ Armstrong RN (1997). "Structure, Catalytic Mechanism, and Evolution of the Glutathione Transferases". Chemical Research in Toxicology 10 (1): 2–18. doi:10.1021/tx960072x. PMID 9074797. 
  2. ^ Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV, Rosner MH, Chrunyk BA, Perregaux DE, Gabel CA, Geoghegan KF, Pandit J (2000). "Identification, Characterization, and Crystal Structure of the Omega Class Glutathione Transferases". Journal of Biological Chemistry 275 (32): 24798–24806. doi:10.1074/jbc.M001706200. PMID 10783391. 
  3. ^ Dulhunty A, Gage P, Curtis S, Chelvanayagam G, Board P (2000). "The Glutathione Transferase Structural Family Includes a Nuclear Chloride Channel and a Ryanodine Receptor Calcium Release Channel Modulator". Journal of Biological Chemistry 276 (5): 3319–3323. doi:10.1074/jbc.M007874200. PMID 11035031. 
  4. ^ Eaton DL, Bammler TK (1999). "Concise review of the glutathione S-transferases and their significance to toxicology". Toxicological sciences : an official journal of the Society of Toxicology 49 (2): 156–164. PMID 10416260. 
  5. ^ Polekhina G, Board PG, Blackburn AC, Parker MW (2001). "Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity". Biochemistry 40 (6): 1567–1576. doi:10.1021/bi002249z. PMID 11327815. 
  6. ^ Vuilleumier S (1997). "Bacterial glutathione S-transferases: What are they good for?". Journal of bacteriology 179 (5): 1431–1441. PMC 178850. PMID 9045797. 

Further reading[edit]

  • Nishida M, Harada S, Noguchi S, Satow Y, Inoue H, Takahashi K (1998). "Three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate: Catalytic roles of Cys10 and His106". Journal of Molecular Biology 281 (1): 135–147. doi:10.1006/jmbi.1998.1927. PMID 9680481. 
  • Dixon DP, Lapthorn A, Edwards R (2002). "Plant glutathione transferases". Genome biology 3 (3): REVIEWS3004. PMC 139027. PMID 11897031. 
  • [1], GST Gene Fusion System Handbook by GE Healthcare Life Sciences

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Glutathione S-transferase, C-terminal domain Provide feedback

This domain is closely related to PF00043.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

No InterPro data for this Pfam family.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan GST_C (CL0497), which contains the following 5 members:

GST_C GST_C_2 GST_C_3 GST_C_4 Tom37_C

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(279)
Full
(7419)
Representative proteomes NCBI
(11894)
Meta
(3037)
RP15
(615)
RP35
(1327)
RP55
(1986)
RP75
(2549)
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(279)
Full
(7419)
Representative proteomes NCBI
(11894)
Meta
(3037)
RP15
(615)
RP35
(1327)
RP55
(1986)
RP75
(2549)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(279)
Full
(7419)
Representative proteomes NCBI
(11894)
Meta
(3037)
RP15
(615)
RP35
(1327)
RP55
(1986)
RP75
(2549)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Jackhmmer:A3PFR8
Previous IDs: none
Type: Domain
Author: Bateman A
Number in seed: 279
Number in full: 7419
Average length of the domain: 85.10 aa
Average identity of full alignment: 19 %
Average coverage of the sequence by the domain: 31.76 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 24.9 24.9
Trusted cut-off 24.9 24.9
Noise cut-off 24.8 24.8
Model length: 69
Family (HMM) version: 1
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the GST_C_2 domain has been found. There are 100 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...