Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
1  structure 1377  species 0  interactions 1524  sequences 24  architectures

Family: HARE-HTH (PF05066)

Summary: HB1, ASXL, restriction endonuclease HTH domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

HB1, ASXL, restriction endonuclease HTH domain Provide feedback

A winged helix-turn-helix domain present in the plant HB1, vertebrate ASXL, the H. pylori restriction endonuclease HpyAIII(HgrA), the RNA polymerase delta subunit(RpoE) of Gram positive bacteria and several restriction endonucleases [1]. The domain is distinguished by the presence of a conserved one-turn helix between helix-3 and the preceding conserved turn. Its diverse architectures in eukaryotic species with extensive gene body methylation is suggestive of a chromatin function. The genetic interaction of the HARE-HTH containing ASXL with the methyl cytosine hydroxylating Tet2 protein is suggestive of a role for the domain in discriminating sequences with DNA modifications such as hmC [1]. Bacterial versions include fusions to diverse restriction endonucleases, and a DNA glycosylase where it may play a similar role in detecting modified DNA. Certain bacterial version of the HARE-HTH domain show fusions to the helix-hairpin-helix domain of the RNA polymerase alpha subunit and the HTH domains found in regions 3 and 4 of the sigma factors [1]. These versions are predicted to function as a novel inhibitor of the binding of RNA polymerase to transcription start sites, similar to the Bacillus delta protein [2,3].

Literature references

  1. Müller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM, Kletzin A , Mol Microbiol 2004;0:0-0.: Coupling of the Pathway of Sulfur Oxidation to Dioxygen Reduction: Characterization of a Novel Membrane-Bound Thiosulfate:Quinone Oxidoreductase 2 PUBMED:0 EPMC:0

  2. Lopez de Saro FJ, Yoshikawa N, Helmann JD; , J Biol Chem 1999;274:15953-15958.: Expression, abundance, and RNA polymerase binding properties of the delta factor of Bacillus subtilis. PUBMED:10336502 EPMC:10336502

  3. Lopez de Saro FJ, Woody AY, Helmann JD; , J Mol Biol 1995;252:189-202.: Structural analysis of the Bacillus subtilis delta factor: a protein polyanion which displaces RNA from RNA polymerase. PUBMED:7545758 EPMC:7545758


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR007759

DNA-directed RNA polymerases EC (also known as DNA-dependent RNA polymerases) are responsible for the polymerisation of ribonucleotides into a sequence complementary to the template DNA. In eukaryotes, there are three different forms of DNA-directed RNA polymerases transcribing different sets of genes. Most RNA polymerases are multimeric enzymes and are composed of a variable number of subunits. The core RNA polymerase complex consists of five subunits (two alpha, one beta, one beta-prime and one omega) and is sufficient for transcription elongation and termination but is unable to initiate transcription. Transcription initiation from promoter elements requires a sixth, dissociable subunit called a sigma factor, which reversibly associates with the core RNA polymerase complex to form a holoenzyme [PUBMED:3052291]. The core RNA polymerase complex forms a "crab claw"-like structure with an internal channel running along the full length [PUBMED:10499798]. The key functional sites of the enzyme, as defined by mutational and cross-linking analysis, are located on the inner wall of this channel.

RNA synthesis follows after the attachment of RNA polymerase to a specific site, the promoter, on the template DNA strand. The RNA synthesis process continues until a termination sequence is reached. The RNA product, which is synthesised in the 5' to 3'direction, is known as the primary transcript. Eukaryotic nuclei contain three distinct types of RNA polymerases that differ in the RNA they synthesise:

  • RNA polymerase I: located in the nucleoli, synthesises precursors of most ribosomal RNAs.
  • RNA polymerase II: occurs in the nucleoplasm, synthesises mRNA precursors.
  • RNA polymerase III: also occurs in the nucleoplasm, synthesises the precursors of 5S ribosomal RNA, the tRNAs, and a variety of other small nuclear and cytosolic RNAs.
Eukaryotic cells are also known to contain separate mitochondrial and chloroplast RNA polymerases. Eukaryotic RNA polymerases, whose molecular masses vary in size from 500 to 700 kDa, contain two non-identical large (>100 kDa) subunits and an array of up to 12 different small (less than 50 kDa) subunits.

The delta protein is a dispensable subunit of Bacillus subtilis RNA polymerase (RNAP) that has major effects on the biochemical properties of the purified enzyme. In the presence of delta, RNAP displays an increased specificity of transcription, a decreased affinity for nucleic acids, and an increased efficiency of RNA synthesis because of enhanced recycling [PUBMED:10336502]. The delta protein, contains two distinct regions, an N-terminal domain and a glutamate and aspartate residue-rich C-terminal region [PUBMED:7545758].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan HTH (CL0123), which contains the following 202 members:

AphA_like Arg_repressor B-block_TFIIIC Bac_DnaA_C BetR Bot1p BrkDBD CENP-B_N Cro Crp DDRGK Dimerisation DUF1133 DUF1153 DUF1323 DUF134 DUF1441 DUF1492 DUF1495 DUF1670 DUF1804 DUF1836 DUF1870 DUF2089 DUF2250 DUF2316 DUF3116 DUF3853 DUF387 DUF3908 DUF4095 DUF4364 DUF739 DUF742 DUF977 E2F_TDP ELK Ets Exc F-112 FaeA Fe_dep_repr_C Fe_dep_repress FeoC Ftsk_gamma FUR GcrA GerE GntR HARE-HTH HemN_C Homeobox Homeobox_KN Homez HrcA_DNA-bdg HSF_DNA-bind HTH_1 HTH_10 HTH_11 HTH_12 HTH_13 HTH_15 HTH_16 HTH_17 HTH_18 HTH_19 HTH_20 HTH_21 HTH_22 HTH_23 HTH_24 HTH_25 HTH_26 HTH_27 HTH_28 HTH_29 HTH_3 HTH_30 HTH_31 HTH_32 HTH_33 HTH_34 HTH_35 HTH_36 HTH_37 HTH_38 HTH_39 HTH_40 HTH_41 HTH_42 HTH_43 HTH_45 HTH_5 HTH_6 HTH_7 HTH_8 HTH_9 HTH_AraC HTH_AsnC-type HTH_CodY HTH_Crp_2 HTH_DeoR HTH_IclR HTH_Mga HTH_OrfB_IS605 HTH_psq HTH_Tnp_1 HTH_Tnp_1_2 HTH_Tnp_4 HTH_Tnp_IS1 HTH_Tnp_IS630 HTH_Tnp_ISL3 HTH_Tnp_Mu_1 HTH_Tnp_Mu_2 HTH_Tnp_Tc3_1 HTH_Tnp_Tc3_2 HTH_Tnp_Tc5 HTH_WhiA HxlR IF2_N KorB LacI LexA_DNA_bind LZ_Tnp_IS481 MADF_DNA_bdg MarR MarR_2 Med9 MerR MerR-DNA-bind MerR_1 MerR_2 Mga Mnd1 Mor MotA_activ MRP-L20 Myb_DNA-bind_2 Myb_DNA-bind_3 Myb_DNA-bind_4 Myb_DNA-bind_5 Myb_DNA-bind_6 Myb_DNA-binding Neugrin NUMOD1 OST-HTH P22_Cro PaaX PadR PAX PCI PCI_Csn8 Penicillinase_R Phage_AlpA Phage_antitermQ Phage_CI_repr Phage_CII Phage_rep_org_N Phage_terminase Pou Pox_D5 PuR_N Put_DNA-bind_N Rap1-DNA-bind Rep_3 RepA_C RepA_N RepC RepL Replic_Relax RFX_DNA_binding Ribosomal_S25 Rio2_N RNA_pol_Rpc34 RP-C RPA RPA_C RQC Rrf2 RTP SAC3_GANP SgrR_N Sigma54_CBD Sigma54_DBD Sigma70_ECF Sigma70_r2 Sigma70_r3 Sigma70_r4 Sigma70_r4_2 SpoIIID Sulfolobus_pRN TBPIP Terminase_5 TetR_N TFIIE_alpha Tn916-Xis Trans_reg_C TrfA TrmB Trp_repressor UPF0122 z-alpha

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(67)
Full
(1524)
Representative proteomes NCBI
(816)
Meta
(13)
RP15
(72)
RP35
(138)
RP55
(195)
RP75
(259)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(67)
Full
(1524)
Representative proteomes NCBI
(816)
Meta
(13)
RP15
(72)
RP35
(138)
RP55
(195)
RP75
(259)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(67)
Full
(1524)
Representative proteomes NCBI
(816)
Meta
(13)
RP15
(72)
RP35
(138)
RP55
(195)
RP75
(259)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: COG3343
Previous IDs: RNA_pol_delta;
Type: Family
Author: Bateman A, Aravind L, Iyer, LM
Number in seed: 67
Number in full: 1524
Average length of the domain: 68.90 aa
Average identity of full alignment: 34 %
Average coverage of the sequence by the domain: 20.55 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.9 25.9
Trusted cut-off 25.9 25.9
Noise cut-off 25.8 25.8
Model length: 72
Family (HMM) version: 8
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the HARE-HTH domain has been found. There are 1 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...