Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
68  structures 251  species 2  interactions 1473  sequences 34  architectures

Family: Lipoxygenase (PF00305)

Summary: Lipoxygenase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Lipoxygenase". More...

Lipoxygenase Edit Wikipedia article

Lipoxygenase
2p0m.gif
Structure of rabbit reticulocyte 15S-lipoxygenase.[1]
Identifiers
Symbol Lipoxygenase
Pfam PF00305
InterPro IPR013819
PROSITE PDOC00077
SCOP 2sbl
SUPERFAMILY 2sbl
OPM superfamily 87
OPM protein 2p0m

Lipoxygenases (EC 1.13.11.-) are a family of iron-containing enzymes that catalyse the dioxygenation of polyunsaturated fatty acids in lipids containing a cis,cis-1,4- pentadiene structure. It catalyses the following reaction:

fatty acid + O2 = fatty acid hydroperoxide

Lipoxygenases are found in plants, animals and fungi. Products of lipoxygenases are involved in diverse cell functions.

Biological function and classification[edit]

These enzymes are most common in plants where they may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding.[2] In mammals a number of lipoxygenases isozymes are involved in the metabolism of eicosanoids (such as prostaglandins, leukotrienes and nonclassic eicosanoids).[3] Sequence data is available for the following lipoxygenases:

Rabbit 15-lipoxygenase (blue) with inhibitor (yellow) bound in the active site

3D structure[edit]

There are several lipoxygenase structures known including: soybean lipoxygenase L1 and L3, coral 8-lipoxygenase, human 5-lipoxygenase, rabbit 15-lipoxygenase and porcine leukocyte 12-lipoxygenase catalytic domain. The protein consists of a small N-terminal PLAT domain and a major C-terminal catalytic domain (see Pfam link in this article), which contains the active site. In both plant and mammalian enzymes, the N-terminal domain contains an eight-stranded antiparallel β-barrel, but in the soybean lipoxygenases this domain is significantly larger than in the rabbit enzyme. The plant lipoxygenases can be enzymatically cleaved into two fragments which stay tightly associated while the enzyme remains active; separation of the two domains leads to loss of catalytic activity. The C-terminal (catalytic) domain consists of 18-22 helices and one (in rabbit enzyme) or two (in soybean enzymes) antiparallel β-sheets at the opposite end from the N-terminal β-barrel.

Active site[edit]

The iron atom in lipoxygenases is bound by four ligands, three of which are histidine residues.[5] Six histidines are conserved in all lipoxygenase sequences, five of them are found clustered in a stretch of 40 amino acids. This region contains two of the three zinc-ligands; the other histidines have been shown[6] to be important for the activity of lipoxygenases.

The two long central helices cross at the active site; both helices include internal stretches of π-helix that provide three histidine (His) ligands to the active site iron. Two cavities in the major domain of soybean lipoxygenase-1 (cavities I and II) extend from the surface to the active site. The funnel-shaped cavity I may function as a dioxygen channel; the long narrow cavity II is presumably a substrate pocket. The more compact mammalian enzyme contains only one boot-shaped cavity (cavity II). In soybean lipoxygenase-3 there is a third cavity which runs from the iron site to the interface of the β-barrel and catalytic domains. Cavity III, the iron site and cavity II form a continuous passage throughout the protein molecule.

The active site iron is coordinated by Nε of three conserved His residues and one oxygen of the C-terminal carboxyl group. In addition, in soybean enzymes the side chain oxygen of asparagine is weakly associated with the iron. In rabbit lipoxygenase, this Asn residue is replaced with His which coordinates the iron via Nδ atom. Thus, the coordination number of iron is either five or six, with a hydroxyl or water ligand to a hexacoordinate iron.

Details about the active site feature of lipoxygenase were revealed in the structure of porcine leukocyte 12-lipoxygenase catalytic domain complex [7] In the 3D structure, the substrate analog inhibitor occupied a U-shaped channel open adjacent to the iron site. This channel could accommodate arachidonic acid without much computation, defining the substrate binding details for the lipoxygenase reaction. In addition, a plausible access channel, which intercepts the substrate binding channel and extended to the protein surface could be counted for the oxygen path.

Biochemical classification[edit]

EC 1.13.11.12 lipoxygenase (linoleate:oxygen 13-oxidoreductase) linoleate + O2 = (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoate
EC 1.13.11.31 arachidonate 12-lipoxygenase (arachidonate:oxygen 12-oxidoreductase) arachidonate + O2 = (5Z,8Z,10E,12S,14Z)-12-hydroperoxyicosa-5,8,10,14-tetraenoate
EC 1.13.11.33 arachidonate 15-lipoxygenase (arachidonate:oxygen 15-oxidoreductase) arachidonate + O2 = (5Z,8Z,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
EC 1.13.11.34 arachidonate 5-lipoxygenase (arachidonate:oxygen 5-oxidoreductase) arachidonate + O2 = leukotriene A4 + H2
EC 1.13.11.40 arachidonate 8-lipoxygenase (arachidonate:oxygen 8-oxidoreductase) arachidonate + O2 = (5Z,8R,9E,11Z,14Z)-8-hydroperoxyicosa-5,9,11,14-tetraenoate

Soybean Lipoxygenase 1 exhibits the largest H/D kinetic isotope effect (KIE) on kcat (kH/kD) (81 near room temperature) so far reported for a biological system.

Human proteins from lipoxygenase family include ALOX12, ALOX12B, ALOX12P2, ALOX15, ALOX15B, ALOX5 and ALOXE3.

References[edit]

  1. ^ Choi J, Chon JK, Kim S, Shin W (February 2008). "Conformational flexibility in mammalian 15S-lipoxygenase: Reinterpretation of the crystallographic data". Proteins 70 (3): 1023–32. doi:10.1002/prot.21590. PMID 17847087. 
  2. ^ Vick BA, Zimmerman DC (1987). Oxidative systems for the modification of fatty acids 9. pp. 53–90. 
  3. ^ Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986). "Arachidonic acid metabolism". Annu. Rev. Biochem. 55: 69–102. doi:10.1146/annurev.bi.55.070186.000441. PMID 3017195. 
  4. ^ Tanaka K, Ohta H, Peng YL, Shirano Y, Hibino T, Shibata D (1994). "A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus". J. Biol. Chem. 269 (5): 3755–3761. PMID 7508918. 
  5. ^ Boyington JC, Gaffney BJ, Amzel LM (1993). "The three-dimensional structure of an arachidonic acid 15-lipoxygenase". Science 260 (5113): 1482–1486. doi:10.1126/science.8502991. PMID 8502991. 
  6. ^ Steczko J, Donoho GP, Clemens JC, Dixon JE, Axelrod B (1992). "Conserved histidine residues in soybean lipoxygenase: functional consequences of their replacement". Biochemistry 31 (16): 4053–4057. doi:10.1021/bi00131a022. PMID 1567851. 
  7. ^ Xu, S.; Mueser T.C., Marnett L.J.,Funk M.O. (2012). "Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis.". Structure 20 (9): 1490. doi:10.1016/j.str.2012.06.003. PMID 22795085. 

External links[edit]

This article incorporates text from the public domain Pfam and InterPro IPR001024

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Lipoxygenase Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR013819

Lipoxygenases (EC) are a class of iron-containing dioxygenases which catalyses the hydroperoxidation of lipids, containing a cis,cis-1,4-pentadiene structure. They are common in plants where they may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. In mammals a number of lipoxygenases isozymes are involved in the metabolism of prostaglandins and leukotrienes [PUBMED:3017195]. Sequence data is available for the following lipoxygenases:

  • Plant lipoxygenases (EC, INTERPRO). Plants express a variety of cytosolic isozymes as well as what seems to be a chloroplast isozyme [PUBMED:7508918].
  • Mammalian arachidonate 5-lipoxygenase (EC, INTERPRO).
  • Mammalian arachidonate 12-lipoxygenase (EC, INTERPRO).
  • Mammalian erythroid cell-specific 15-lipoxygenase (EC, INTERPRO).

The iron atom in lipoxygenases is bound by four ligands, three of which are histidine residues [PUBMED:8502991]. Six histidines are conserved in all lipoxygenase sequences, five of them are found clustered in a stretch of 40 amino acids. This region contains two of the three iron-ligands; the other histidines have been shown [PUBMED:1567851] to be important for the activity of lipoxygenases.

This entry represents the C-terminal region of these proteins.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(16)
Full
(1473)
Representative proteomes NCBI
(1491)
Meta
(13)
RP15
(146)
RP35
(331)
RP55
(477)
RP75
(681)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(16)
Full
(1473)
Representative proteomes NCBI
(1491)
Meta
(13)
RP15
(146)
RP35
(331)
RP55
(477)
RP75
(681)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(16)
Full
(1473)
Representative proteomes NCBI
(1491)
Meta
(13)
RP15
(146)
RP35
(331)
RP55
(477)
RP75
(681)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: lipoxygenase;
Type: Domain
Author: Finn RD
Number in seed: 16
Number in full: 1473
Average length of the domain: 407.70 aa
Average identity of full alignment: 28 %
Average coverage of the sequence by the domain: 73.57 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 19.4 19.4
Trusted cut-off 20.7 20.0
Noise cut-off 19.0 19.3
Model length: 667
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

Lipoxygenase PLAT

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Lipoxygenase domain has been found. There are 68 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...