Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
45  structures 87  species 4  interactions 1582  sequences 126  architectures

Family: fn2 (PF00040)

Summary: Fibronectin type II domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Fibronectin type II domain". More...

Fibronectin type II domain Edit Wikipedia article

Fibronectin type II domain
1h8p opm.gif
Collagen-binding type II domain of seminal plasma protein PDC-109.[1]
Identifiers
Symbol fn2
Pfam PF00040
InterPro IPR000562
SMART SM00059
PROSITE PDOC00022
SCOP 1pdc
SUPERFAMILY 1pdc
OPM superfamily 123
OPM protein 1h8p

Fibronectin type II domain is a collagen-binding protein domain.

Fibronectin is a multi-domain glycoprotein, found in a soluble form in plasma, and in an insoluble form in loose connective tissue and basement membranes, that binds cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin. Fibronectins are involved in a number of important functions e.g., wound healing; cell adhesion; blood coagulation; cell differentiation and migration; maintenance of the cellular cytoskeleton; and tumour metastasis.[2] The major part of the sequence of fibronectin consists of the repetition of three types of domains, which are called type I, II, and III.[3]

Type II domain is approximately sixty amino acids long,[4] contains four conserved cysteines involved in disulfide bonds and is part of the collagen-binding region of fibronectin. Type II domains occur two times in fibronectin. Type II domains have also been found in a range of proteins including blood coagulation factor XII; bovine seminal plasma proteins PDC-109 (BSP-A1/A2) and BSP-A3;[5] cation-independent mannose-6-phosphate receptor;[6] mannose receptor of macrophages;[7] 180 Kd secretory phospholipase A2 receptor;[8] DEC-205 receptor;[9] 72 Kd and 92 Kd type IV collagenase (EC 3.4.24.24);[10] and hepatocyte growth factor activator.[11]

Human proteins containing this domain[edit]

BSPH1; ELSPBP1; F12; FN1; HGFAC; IGF2R; LY75; MMP2; MMP9; MRC1; MRC1L1; MRC2; PLA2R1; SEL1L;

References[edit]

  1. ^ Wah DA, Fernández-Tornero C, Sanz L, Romero A, Calvete JJ (April 2002). "Sperm coating mechanism from the 1.8 A crystal structure of PDC-109-phosphorylcholine complex". Structure 10 (4): 505–14. doi:10.1016/S0969-2126(02)00751-7. PMID 11937055. 
  2. ^ Dean DC, Bowlus CL, Bourgeois S (1987). "Cloning and analysis of the promotor region of the human fibronectin gene". Proc. Natl. Acad. Sci. U.S.A. 84 (7): 1876–1880. doi:10.1073/pnas.84.7.1876. PMC 304544. PMID 3031656. 
  3. ^ Skorstengaard K, Jensen MS, Sahl P, Petersen TE, Magnusson S (1986). "Complete primary structure of bovine plasma fibronectin". Eur. J. Biochem. 161 (2): 441–453. doi:10.1111/j.1432-1033.1986.tb10464.x. PMID 3780752. 
  4. ^ Pankov R, Yamada KM. (2002). "Fibronectin at a glance.". J Cell Sci. 115: 3861–3863. doi:10.1242/jcs.00059. PMID 12244123. 
  5. ^ Chretien M, Seidah NG, Manjunath P, Rochemont J, Sairam MR (1987). "Complete amino acid sequence of BSP-A3 from bovine seminal plasma. Homology to PDC-109 and to the collagen-binding domain of fibronectin". Biochem. J. 243 (1): 195–203. PMC 1147832. PMID 3606570. 
  6. ^ Kornfeld S (1992). "Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors". Annu. Rev. Biochem. 61 (1): 307–330. doi:10.1146/annurev.bi.61.070192.001515. PMID 1323236. 
  7. ^ Drickamer K, Taylor ME, Conary JT, Lennartz MR, Stahl PD (1990). "Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains". J. Biol. Chem. 265 (21): 12156–12162. PMID 2373685. 
  8. ^ Lazdunski M, Barhanin J, Lambeau G, Ancian P (1994). "Cloning and expression of a membrane receptor for secretory phospholipases A2". J. Biol. Chem. 269 (3): 1575–1578. PMID 8294398. 
  9. ^ Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC (1995). "The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing". Nature 375 (6527): 151–155. doi:10.1038/375151a0. PMID 7753172. 
  10. ^ Grant GA, Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Seltzer JL, Kronberger A, Bauer EA, Goldberg GI, He CS (1988). "H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen". J. Biol. Chem. 263 (14): 6579–6587. PMID 2834383. 
  11. ^ Miyazawa K, Shimomura T, Kitamura A, Kondo J, Morimoto Y, Kitamura N (1993). "Molecular cloning and sequence analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII". J. Biol. Chem. 268 (14): 10024–10028. PMID 7683665. 

External links[edit]


This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Fibronectin type II domain Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000562

Fibronectin is a multi-domain glycoprotein, found in a soluble form in plasma, and in an insoluble form in loose connective tissue and basement membranes, that binds cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin. Fibronectins are involved in a number of important functions e.g., wound healing; cell adhesion; blood coagulation; cell differentiation and migration; maintenance of the cellular cytoskeleton; and tumour metastasis [PUBMED:3031656]. The major part of the sequence of fibronectin consists of the repetition of three types of domains, which are called type I, II, and III [PUBMED:3780752]. Type II domain is approximately forty residues long, contains four conserved cysteines involved in disulphide bonds and is part of the collagen-binding region of fibronectin. In fibronectin the type II domain is duplicated. Type II domains have also been found in a range of proteins including blood coagulation factor XII; bovine seminal plasma proteins PDC-109 (BSP-A1/A2) and BSP-A3 [PUBMED:3606570]; cation-independent mannose-6-phosphate receptor [PUBMED:1323236]; mannose receptor of macrophages [PUBMED:2373685]; 180 Kd secretory phospholipase A2 receptor [PUBMED:8294398]. DEC-205 receptor [PUBMED:7753172]; 72 Kd and 92 Kd type IV collagenase (EC) [PUBMED:2834383]; and hepatocyte growth factor activator [PUBMED:7683665].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(111)
Full
(1582)
Representative proteomes NCBI
(1460)
Meta
(22)
RP15
(92)
RP35
(123)
RP55
(281)
RP75
(677)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(111)
Full
(1582)
Representative proteomes NCBI
(1460)
Meta
(22)
RP15
(92)
RP35
(123)
RP55
(281)
RP75
(677)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(111)
Full
(1582)
Representative proteomes NCBI
(1460)
Meta
(22)
RP15
(92)
RP35
(123)
RP55
(281)
RP75
(677)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Domain
Author: Sonnhammer ELL
Number in seed: 111
Number in full: 1582
Average length of the domain: 41.30 aa
Average identity of full alignment: 49 %
Average coverage of the sequence by the domain: 6.08 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.2 22.2
Trusted cut-off 23.6 22.6
Noise cut-off 22.1 22.0
Model length: 42
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 4 interactions for this family. More...

fn2 Peptidase_M10 Hemopexin fn1

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the fn2 domain has been found. There are 45 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...