Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
3  structures 268  species 0  interactions 301  sequences 11  architectures

Family: Rad10 (PF03834)

Summary: Binding domain of DNA repair protein Ercc1 (rad10/Swi10)

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Binding domain of DNA repair protein Ercc1 (rad10/Swi10) Provide feedback

Ercc1 and XPF (xeroderma pigmentosum group F-complementing protein) are two structure-specific endonucleases of a class of seven containing an ERCC4 domain. Together they form an obligate complex that functions primarily in nucleotide excision repair (NER), a versatile pathway able to detect and remove a variety of DNA lesions induced by UV light and environmental carcinogens, and secondarily in DNA interstrand cross-link repair and telomere maintenance. This domain in fact binds simultaneously to both XPF and single-stranded DNA; this ternary complex explains the important role of Ercc1 in targeting its catalytic XPF partner to the NER pre-incision complex [3].

Literature references

  1. Xu H, Swoboda I, Bhalla PL, Sijbers AM, Zhao C, Ong EK, Hoeijmakers JH, Singh MB; , Plant J. 1998;13:823-829.: Plant homologue of human excision repair gene ERCC1 points to conservation of DNA repair mechanisms. PUBMED:9681020 EPMC:9681020

  2. Park Y, Gerson SL; , Annu Rev Med. 2005;56:495-508.: DNA repair defects in stem cell function and aging. PUBMED:15660524 EPMC:15660524

  3. Tripsianes K, Folkers GE, Zheng C, Das D, Grinstead JS, Kaptein R, Boelens R; , Nucleic Acids Res. 2007;35:5789-5798.: Analysis of the XPA and ssDNA-binding surfaces on the central domain of human ERCC1 reveals evidence for subfunctionalization. PUBMED:17720715 EPMC:17720715


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR004579

All proteins in this family for which functions are known are components in a multiprotein endonuclease complex (usually made up of Rad1 and Rad10 homologs). This complex is used primarily for nucleotide excision repair but also for some aspects of recombination repair. In yeast, Rad10 works as a heterodimer with Rad1, and is involved in nucleotide excision repair of DNA damaged with UV light, bulky adducts or cross-linking agents. The complex forms an endonuclease which specifically degrades single-stranded DNA.

Ercc1 and XPF (xeroderma pigmentosum group F-complementing protein) are two structure-specific endonucleases of a class of seven containing an ERCC4 domain. Together they form an obligate complex that functions primarily in nucleotide excision repair (NER), a versatile pathway able to detect and remove a variety of DNA lesions induced by UV light and environmental carcinogens, and secondarily in DNA inter-strand cross-link repair and telomere maintenance. This domain in fact binds simultaneously to both XPF and single-stranded DNA; this ternary complex explains the important role of Ercc1 in targeting its catalytic XPF partner to the NER pre-incision complex [PUBMED:17720715].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(26)
Full
(301)
Representative proteomes NCBI
(287)
Meta
(4)
RP15
(73)
RP35
(120)
RP55
(178)
RP75
(216)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(26)
Full
(301)
Representative proteomes NCBI
(287)
Meta
(4)
RP15
(73)
RP35
(120)
RP55
(178)
RP75
(216)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(26)
Full
(301)
Representative proteomes NCBI
(287)
Meta
(4)
RP15
(73)
RP35
(120)
RP55
(178)
RP75
(216)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: TIGRFAMs
Previous IDs: none
Type: Family
Author: TIGRFAMs, Griffiths-Jones SR, Coggill PC
Number in seed: 26
Number in full: 301
Average length of the domain: 67.50 aa
Average identity of full alignment: 46 %
Average coverage of the sequence by the domain: 21.96 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.1 22.1
Trusted cut-off 23.9 23.4
Noise cut-off 21.0 20.3
Model length: 69
Family (HMM) version: 9
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Rad10 domain has been found. There are 3 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...