Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
1  structure 53  species 0  interactions 118  sequences 2  architectures

Family: Motilin_ghrelin (PF04644)

Summary: Motilin/ghrelin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Motilin". More...

Motilin Edit Wikipedia article

Motilin
Motilin Image.png
NMR solution structure of motilin in phospholipid bicellar solution.[1]
Identifiers
Symbol MLN
Entrez 4295
HUGO 7141
OMIM 158270
PDB 1lbj (RCSB PDB PDBe PDBj)
RefSeq NM_001040109
UniProt P12872
Other data
Locus Chr. 6 p21.3-p21.2
Motilin/ghrelin
PDB 1lbj EBI.jpg
Structure of motilin in isotropic phospholipid bicellar solution.[1]
Identifiers
Symbol Motilin_ghrelin
Pfam PF04644
InterPro IPR006738
SCOP 1lbj
SUPERFAMILY 1lbj
OPM superfamily 154
OPM protein 1lbj

Motilin is a 22-amino acid polypeptide hormone in the motilin family that, in humans, is encoded by the MLN gene.[2]

Motilin is secreted by endocrine M cells (these are not the same M cells that are in Peyer's patches) that are numerous in crypts of the small intestine, especially in the duodenum and jejunum.[3] It is released into the general circulation in humans at about 100-min intervals during the inter-digestive state and is the most important factor in controlling the inter-digestive migrating contractions ; and it also stimulates endogenous release of the endocrine pancreas.[4] Based on amino acid sequence, motilin is unrelated to other hormones. Because of its ability to stimulate gastric activity, it was named "Motilin". Apart from in humans, motilin receptors are found in the gastrointestinal tracts of pigs, rats, cows, and cats, and in the central nervous system of rabbits.

Discovery[edit]

Motilin was discovered by J.C. Brown when he introduced alkaline solution into duodena of dogs, which caused strong gastric contractions. Brown et al. predicted that alkali could either release stimulus to activate motor activity or prevent the secretion of inhibitory hormone. They isolated a polypeptide as a by-product from purification of secretin on carboxymethyl cellulose. They named this polypeptide “Motilin.”[5]

Structure[edit]

Motilin has 22 amino acids and molecular weight of 2698. In extract from human gut and plasma, there are two basic forms of motilin. The first molecular form is the polypeptide of 22 amino acids. The second form, on the other hand, is larger and contains the same 22 amino acids as the first form but includes an additional carboxyl-terminus end.[6]

The sequences of amino acids of motilin is: Phe-Val-Pro-Ile-Phe-Thr-Tyr-Gly-Glu-Leu-Gln-Arg-Met-Gln-Glu-Lys-Glu-Arg-Asn-Lys-Gly-Gln.[7]

The structure and dynamics of the gastrointestinal peptide hormone motilin have been studied in the presence of isotropic q = 0.5 phospholipid bicelles. The NMR solution structure of the peptide in acidic bicelle solution was determined from 203 NOE-derived distance constraints and six backbone torsion angle constraints. Dynamic properties for the 13Cα→1H vector in Leu-10 were determined for motilin specifically labeled with 13C at this position by analysis of multiple-field relaxation data. The structure reveals an ordered alpha-helical conformation between Glu-9 and Lys-20. The N-terminus is also well structured with a turn resembling that of a classical beta-turn. The 13C dynamics clearly show that motilin tumbles slowly in solution, with a correlation time characteristic of a large object.[1]

Stimulus[edit]

Control of motilin secretion is largely unknown, although some studies suggest that an alkaline pH in the duodenum stimulates its release. It is interesting to note, however, that at low pH it inhibits gastric motor activity, whereas at high pH it has a stimulatory effect. Some studies in dogs have shown that motilin is released during fasting or interdigestive period, and intake of food during this period can prevent the secretion of motilin.[8] Intravenous injection of glucose, which increases the release of insulin, is also found to inhibit cyclic elevation of plasma motilin.[9] Other studies on dogs have also suggested that motilin acted as endogenous ligand in positive feedback mechanism to stimulate the release of more motilin.[10]

Function[edit]

The main function of motilin is to increase the migrating myoelectric complex component of gastrointestinal motility and stimulate the production of pepsin. Motilin is also called "housekeeper of the gut" because it improves peristalsis in the small intestine and clears out the gut to prepare for the next meal.[7] A high level of motilin secreted between meals into the blood stimulates the contraction of the fundus and antrum and accelerates gastric emptying. It then contracts the gallbladder and increases the squeeze pressure of the lower esophageal sphincter. Other functions of motilin include increasing the release of pancreatic polypeptide and somatostatin[11]

Motilin agonists[edit]

Erythromycin and related antibiotics act as non-peptide motilin agonists, and are sometimes used for their ability to stimulate gastrointestinal motility. Administration of a low dose of erythromycin will induce peristalsis, which provides additional support for the conclusion that motilin secretion triggers this pattern of gastrointestinal motility, rather than results from it. However, some of erythromycin’s properties, including antibiotic activity, are not appropriate for a drug designed for chronic use over a patient's lifetime.

New motilin agonists are erythromycin-based; however, it may be that this class of drugs becomes redundant. Growth hormone secretagogue receptors share 52% of their DNA with motilin receptors, and agonists of these receptors, termed ghrelins, can bring about similar effects to motilin agonists.

Related peptides[edit]

This domain is also found in ghrelin, a growth hormone secretagogue synthesised by endocrine cells in the stomach. Ghrelin stimulates growth hormone secretagogue receptors in the pituitary. These receptors are distinct from the growth hormone-releasing hormone receptors, and, thus, provide a means of controlling pituitary growth hormone release by the gastrointestinal system.[12] Erythromycin has an advantage over metoclopramide in gastric emptying due to lack of central nervous system side-effects. It is not approved by FDA to use for gastric emptying. For short duration for patients with diabetes and for those that must clear the stomach for any procedure, it may be used based on the physician's discretion with full understanding that it is not approved by FDA for this use.

Human proteins[edit]

GHRL; Motilin;

References[edit]

  1. ^ a b c PDB 1lbj; Andersson A, Mäler L (October 2002). "NMR solution structure and dynamics of motilin in isotropic phospholipid bicellar solution". J. Biomol. NMR 24 (2): 103–12. doi:10.1023/A:1020902915969. PMID 12495026. 
  2. ^ Daikh DI, Douglass JO, Adelman JP (October 1989). "Structure and expression of the human motilin gene". DNA 8 (8): 615–21. doi:10.1089/dna.1989.8.615. PMID 2574660. 
  3. ^ Poitras P, Peeters TL (February 2008). "Motilin". Current Opinion in Endocrinology, Diabetes and Obesity 15 (1): 54–7. doi:10.1097/MED.0b013e3282f370af. PMID 18185063. 
  4. ^ Itoh Z (1997). "Motilin and clinical application". Peptides 18 (4): 593–608. doi:10.1016/S0196-9781(96)00333-6. PMID 9210180. 
  5. ^ Brown JC, Cook MA, Dryburgh JR (May 1973). "Motilin, a gastric motor activity stimulating polypeptide: the complete amino acid sequence". Canadian journal of biochemistry 51 (5): 533–7. doi:10.1139/o73-066. PMID 4706833. 
  6. ^ DeGroot, Leslie Jacob (1989). J.E. McGuigan, ed. Endocrinology. Philadelphia: Saunders. p. 2748. ISBN 0-7216-2888-5. 
  7. ^ a b Williams, Robert L. (1981). Textbook of endocrinology (6th ed.). Philadelphia: Saunders. pp. 704–705. ISBN 0-7216-9398-9. 
  8. ^ Itoh Z, Takeuchi S, Aizawa I, Mori K, Taminato T, Seino Y, Imura H, Yanaihara N. (October 1978). "Changes in plasma motilin concentration and gastrointestinal contractile activity in conscious dogs". The American journal of digestive diseases 23 (10): 929–35. doi:10.1007/BF01072469. PMID 717352. 
  9. ^ Lemoyne M, Wassef R, Tassé D, Trudel L, Poitras P (September 1984). "Motilin and the vagus in dogs". Canadian Journal of Physiology and Pharmacology 62 (9): 1092–6. doi:10.1139/y84-182. PMID 6388765. 
  10. ^ Hall KE, Greenberg GR, El-Sharkawy TY, Diamant NE (July 1984). "Relationship between porcine motilin-induced migrating motor complex-like activity, vagal integrity, and endogenous motilin release in dogs". Gastroenterology 87 (1): 76–85. PMID 6724277. 
  11. ^ Frohman, Lawrence A.; Felig, Philip (2001). P. K. Ghosh and T. M. O’Dorisio, ed. Endocrinology & metabolism. New York: McGraw-Hill, Medical Pub. Div. p. 1330. ISBN 0-07-022001-8. 
  12. ^ Kangawa K, Matsuo H, Kojima M, Hosoda H (2001). "Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor". Trends Endocrinol. Metab. 12 (3): 118–122. doi:10.1016/S1043-2760(00)00362-3. PMID 11306336. 

External links[edit]

This article incorporates text from the public domain Pfam and InterPro IPR006737

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Motilin/ghrelin Provide feedback

Motilin is a gastrointestinal regulatory polypeptide produced by motilin cells in the duodenal epithelium. It is released into the general circulation at about 100-min intervals during the inter-digestive state and is the most important factor in controlling the inter-digestive migrating contractions. Motilin also stimulates endogenous release of the endocrine pancreas [1]. This family also includes ghrelin, a growth hormone secretagogue synthesised by endocrine cells in the stomach. Ghrelin stimulates growth hormone secretagogue receptors in the pituitary. These receptors are distinct from the growth hormone-releasing hormone receptors, and thus provide a means of controlling pituitary growth hormone release by the gastrointestinal system [2].

Literature references

  1. Itoh Z; , Peptides 1997;18:593-608.: Motilin and clinical application. PUBMED:9210180 EPMC:9210180

  2. Kojima M, Hosoda H, Matsuo H, Kangawa K; , Trends Endocrinol Metab 2001;12:118-122.: Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. PUBMED:11306336 EPMC:11306336


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR006738

Motilin is a gastrointestinal regulatory polypeptide produced by motilin cells in the duodenal epithelium. It is released into the general circulation at about 100-min intervals during the inter-digestive state and is the most important factor in controlling the inter-digestive migrating contractions. Motilin also stimulates endogenous release of the endocrine pancreas [PUBMED:9210180].

This domain is also found in ghrelin, a growth hormone secretagogue synthesised by endocrine cells in the stomach. Ghrelin stimulates growth hormone secretagogue receptors in the pituitary. These receptors are distinct from the growth hormone-releasing hormone receptors, and thus provide a means of controlling pituitary growth hormone release by the gastrointestinal system [PUBMED:11306336].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(6)
Full
(118)
Representative proteomes NCBI
(126)
Meta
(0)
RP15
(2)
RP35
(2)
RP55
(5)
RP75
(32)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(6)
Full
(118)
Representative proteomes NCBI
(126)
Meta
(0)
RP15
(2)
RP35
(2)
RP55
(5)
RP75
(32)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(6)
Full
(118)
Representative proteomes NCBI
(126)
Meta
(0)
RP15
(2)
RP35
(2)
RP55
(5)
RP75
(32)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_5485 (release 7.5)
Previous IDs: motilin_ghrelin;
Type: Family
Author: Mifsud W
Number in seed: 6
Number in full: 118
Average length of the domain: 27.20 aa
Average identity of full alignment: 59 %
Average coverage of the sequence by the domain: 26.77 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.9 21.9
Trusted cut-off 22.4 23.1
Noise cut-off 21.2 21.8
Model length: 28
Family (HMM) version: 7
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Motilin_ghrelin domain has been found. There are 1 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...