Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
12  structures 229  species 0  interactions 1103  sequences 49  architectures

Family: HMG_box_2 (PF09011)

Summary: HMG-box domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "HMG-box". More...

HMG-box Edit Wikipedia article

HMG (high mobility group) box
2LEF.png
NMR structure of the HMG-box domain of the LEF1 protein (rainbow colored, N-terminus = blue, C-terminus = red) complexed with DNA (brown) based on the PDB 2LEF coordinates.
Identifiers
Symbol PF00505
Pfam PF00505
InterPro IPR009071
SCOP 1hsm
SUPERFAMILY 1hsm

The HMG-box (High Mobility Group box) is a protein domain which is involved in DNA binding.[1]

Structure[edit]

The structure of the HMG-box domain contains three alpha helices separated by loops (see figure to the right).[2]

Function[edit]

HMG-box containing proteins only bind non-B-type DNA conformations (kinked or unwound) with high affinity.[1] HMG-box domains are found in high mobility group proteins, which are involved in the regulation of DNA-dependent processes such as transcription, replication, and DNA repair, all of which require changing the conformation of chromatin.[2]

References[edit]

  1. ^ a b Stros M, Launholt D, Grasser KD (October 2007). "The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins". Cell. Mol. Life Sci. 64 (19–20): 2590–606. doi:10.1007/s00018-007-7162-3. PMID 17599239. 
  2. ^ a b Thomas JO (August 2001). "HMG1 and 2: architectural DNA-binding proteins". Biochem. Soc. Trans. 29 (Pt 4): 395–401. doi:10.1042/BST0290395. PMID 11497996. 

External links[edit]

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

HMG-box domain Provide feedback

This short 71 residue domain is an HMG-box domain. HMG-box domains mediate re-modelling of chromatin-structure. Mammalian HMG-box proteins are of two types: those that are non-sequence-specific DNA-binding proteins with two HMG-box domains and a long highly acidic C-tail; and a diverse group of sequence-specific transcription factor-proteins with either a single HMG-box or up to six copies, and no acidic C-tail [1].

Literature references

  1. Stros M, Launholt D, Grasser KD;, Cell Mol Life Sci. 2007;64:2590-2606.: The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. PUBMED:17599239 EPMC:17599239


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR009071

High mobility group (HMG) box domains are involved in binding DNA, and may be involved in protein-protein interactions as well. The structure of the HMG-box domain consists of three helices in an irregular array. HMG-box domains are found in one or more copies in HMG-box proteins, which form a large, diverse family involved in the regulation of DNA-dependent processes such as transcription, replication, and strand repair, all of which require the bending and unwinding of chromatin. Many of these proteins are regulators of gene expression. HMG-box proteins are found in a variety of eukaryotic organisms, and can be broadly divided into two groups, based on sequence-dependent and sequence-independent DNA recognition; the former usually contain one HMG-box motif, while the latter can contain multiple HMG-box motifs.

HMG-box domains can be found in single or multiple copies in the following protein classes: HMG1 and HMG2 non-histone components of chromatin; SRY (sex determining region Y protein) involved in differential gonadogenesis; the SOX family of transcription factors [PUBMED:12920151]; sequence-specific LEF1 (lymphoid enhancer binding factor 1) and TCF-1 (T-cell factor 1) involved in regulation of organogenesis and thymocyte differentiation [PUBMED:10890911]; structure-specific recognition protein SSRP involved in transcription and replication; MTF1 mitochondrial transcription factor; nucleolar transcription factors UBF 1/2 (upstream binding factor) involved in transcription by RNA polymerase I; Abf2 yeast ARS-binding factor [PUBMED:11779632]; yeast transcription factors lxr1, Rox1, Nhp6b and Spp41; mating type proteins (MAT) involved in the sexual reproduction of fungi [PUBMED:12781674]; and the YABBY plant-specific transcription factors.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan HMG-box (CL0114), which contains the following 7 members:

CHDNT DUF1014 DUF1074 HMG_box HMG_box_2 HMG_box_5 YABBY

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(10)
Full
(1103)
Representative proteomes NCBI
(7615)
Meta
(215)
RP15
(146)
RP35
(190)
RP55
(303)
RP75
(522)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(10)
Full
(1103)
Representative proteomes NCBI
(7615)
Meta
(215)
RP15
(146)
RP35
(190)
RP55
(303)
RP75
(522)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(10)
Full
(1103)
Representative proteomes NCBI
(7615)
Meta
(215)
RP15
(146)
RP35
(190)
RP55
(303)
RP75
(522)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: pdb_2cto
Previous IDs: DUF1898;
Type: Domain
Author: Mistry J, Sammut SJ, Coggill P
Number in seed: 10
Number in full: 1103
Average length of the domain: 70.30 aa
Average identity of full alignment: 37 %
Average coverage of the sequence by the domain: 19.76 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.3 22.3
Trusted cut-off 22.3 22.3
Noise cut-off 22.2 22.2
Model length: 73
Family (HMM) version: 5
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the HMG_box_2 domain has been found. There are 12 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...