Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
69  structures 402  species 4  interactions 4617  sequences 450  architectures

Family: SH3_2 (PF07653)

Summary: Variant SH3 domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Variant SH3 domain Provide feedback

SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organisation. First described in the Src cytoplasmic tyrosine kinase P12931. The structure is a partly opened beta barrel.

Literature references

  1. Kami K, Takeya R, Sumimoto H, Kohda D; , EMBO J 2002;21:4268-4276.: Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pex13p. PUBMED:12169629 EPMC:12169629


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR011511

SH3 (src Homology-3) domains are small protein modules containing approximately 50 amino acid residues [PUBMED:15335710, PUBMED:11256992]. They are found in a great variety of intracellular or membrane-associated proteins [PUBMED:1639195, PUBMED:14731533, PUBMED:7531822] for example, in a variety of proteins with enzymatic activity, in adaptor proteins that lack catalytic sequences and in cytoskeletal proteins, such as fodrin and yeast actin binding protein ABP-1.

The SH3 domain has a characteristic fold which consists of five or six beta-strands arranged as two tightly packed anti-parallel beta sheets. The linker regions may contain short helices [PUBMED:]. The surface of the SH3-domain bears a flat, hydrophobic ligand-binding pocket which consists of three shallow grooves defined by conservative aromatic residues in which the ligand adopts an extended left-handed helical arrangement. The ligand binds with low affinity but this may be enhanced by multiple interactions. The region bound by the SH3 domain is in all cases proline-rich and contains PXXP as a core-conserved binding motif. The function of the SH3 domain is not well understood but they may mediate many diverse processes such as increasing local concentration of proteins, altering their subcellular location and mediating the assembly of large multiprotein complexes [PUBMED:7953536].

This entry represents a variant of the SH3 domain.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan SH3 (CL0010), which contains the following 9 members:

hSH3 SH3_1 SH3_2 SH3_3 SH3_4 SH3_5 SH3_6 SH3_8 SH3_9

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(35)
Full
(4617)
Representative proteomes NCBI
(20355)
Meta
(74)
RP15
(522)
RP35
(751)
RP55
(1381)
RP75
(2334)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(35)
Full
(4617)
Representative proteomes NCBI
(20355)
Meta
(74)
RP15
(522)
RP35
(751)
RP55
(1381)
RP75
(2334)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(35)
Full
(4617)
Representative proteomes NCBI
(20355)
Meta
(74)
RP15
(522)
RP35
(751)
RP55
(1381)
RP75
(2334)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Manual
Previous IDs: none
Type: Domain
Author: Finn RD
Number in seed: 35
Number in full: 4617
Average length of the domain: 59.20 aa
Average identity of full alignment: 23 %
Average coverage of the sequence by the domain: 7.44 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.4 20.4
Trusted cut-off 20.4 20.4
Noise cut-off 20.3 20.3
Model length: 55
Family (HMM) version: 12
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 4 interactions for this family. More...

SH3_2 Guanylate_kin SH3_1 SH2

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the SH3_2 domain has been found. There are 69 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...