Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
4  structures 310  species 0  interactions 4340  sequences 37  architectures

Family: Tetraspannin (PF00335)

Summary: Tetraspanin family

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Tetraspanin". More...

Tetraspanin Edit Wikipedia article

Tetraspanin family
Tetraspanin Figure.jpg
Tetraspanins have four transmembrane domains, two extracellular loops and contain a series of highly conserved amino acid residues.
Identifiers
Symbol Tetraspanin
Pfam PF00335
Pfam clan CL0347
InterPro IPR000301
PROSITE PDOC00371
SCOP 1iv5
SUPERFAMILY 1iv5
CDD cd03127

Tetraspanins are a family of membrane proteins found in all multicellular eukaryotes.

Tetraspanins, also called tetraspans or the transmembrane 4 superfamily (TM4SF), have four transmembrane domains, intracellular N- and C-termini and two extracellular domains, one short (called the small extracellular domain or loop, SED/SEL or EC1) and one longer, typically 100 amino acid residues (the large extracellular domain/loop, LED/LEL or EC2). Although several protein families have four transmembrane domains, tetraspanins are defined by conserved domains listed in the Protein Families database under pfam00335.12.[1] The key features are four or more cysteine residues in the EC2 domain, with two in a highly conserved 'CCG' motif.

Research into this field is relatively recent (less than 20 years) and therefore there is much to learn about the function of specific tetraspanins. Generally, tetraspanins are often thought to act as scaffolding proteins, anchoring multiple proteins to one area of the cell membrane.[2]

Tetraspanins are highly conserved between species. Some tetraspanins can have N-linked glycosylations on the long extracellular loop (LEL, EC2) and palmitoylations at a CXXC motif in their transmembrane region.[3]

There are 34 tetraspanins in mammals, 33 of which have also been identified in humans. Tetraspanins display numerous properties that indicate their physiological importance in cell adhesion, motility, activation and proliferation, as well as their contribution to pathological conditions such as metastasis or viral infection.

A role for tetraspanins in platelets was demonstrated by the bleeding phenotypes of CD151- and TSSC6-deficient mice, which exhibit impaired "outside-in" signalling through αIIbβ3, the major platelet integrin. it is hypothesized that tetraspanins interact with and regulate other platelet receptors.[4]

List of human tetraspanins[edit]

Protein Gene Aliases
TSPAN1 TSPAN1 TSP-1
TSPAN2 TSPAN2 TSP-2
TSPAN3 TSPAN3 TSP-3
TSPAN4 TSPAN4 TSP-4, NAG-2
TSPAN5 TSPAN5 TSP-5
TSPAN6 TSPAN6 TSP-6
TSPAN7 TSPAN7 CD231/TALLA-1/A15
TSPAN8 TSPAN8 CO-029
TSPAN9 TSPAN9 NET-5
TSPAN10 TSPAN10 OCULOSPANIN
TSPAN11 TSPAN11 CD151-like
TSPAN12 TSPAN12 NET-2
TSPAN13 TSPAN13 NET-6
TSPAN14 TSPAN14
TSPAN15 TSPAN15 NET-7
TSPAN16 TSPAN16 TM4-B
TSPAN17 TSPAN17
TSPAN18 TSPAN18
TSPAN19 TSPAN19
TSPAN20 UPK1B UP1b, UPK1B
TSPAN21 TSPAN21 UP1a, UPK1A
TSPAN22 PRPH2 RDS, PRPH2
TSPAN23 TSPAN23 ROM1
TSPAN24 CD151 CD151
TSPAN25 CD53 CD53
TSPAN26 CD37 CD37
TSPAN27 CD82 CD82
TSPAN28 CD81 CD81
TSPAN29 CD9 CD9
TSPAN30 CD63 CD63
TSPAN31 TSPAN31 SAS
TSPAN32 TSPAN32 TSSC6
TSPAN33 TSPAN33
TSPAN34 TSPAN34

See also[edit]

Relevance to parasite vaccines[edit]

The schistosome worms make two tetraspanins: TSP-1 and TSP-2. TSP-2 antibodies are found in some people who seem to have immunity to schistosome infection (Schistosomiasis).[5]

External links[edit]

References[edit]

  1. ^ Pfam
  2. ^ Hemler ME (2005). "Tetraspanin functions and associated microdomains". Nat. Rev. Mol. Cell Biol. 6 (10): 801–11. doi:10.1038/nrm1736. PMID 16314869. 
  3. ^ Wright MD, Tomlinson MG (1994). "The ins and outs of the transmembrane 4 superfamily". Immunol. Today 15 (12): 588–94. doi:10.1016/0167-5699(94)90222-4. PMID 7531445. 
  4. ^ Goschnick MW, Lau LM, Wee JL, Liu YS, Hogarth PM, Robb LM, Hickey MJ, Wright MD, Jackson DE (2006). "Impaired "outside-in" integrin alphaIIbbeta3 signaling and thrombus stability in TSSC6-deficient mice". Blood 108 (6): 1911–8. doi:10.1182/blood-2006-02-004267. PMID 16720835. 
  5. ^ Scientific American May 2008, referring to McManus & Loukas Clinical Microbiology reviews V21,N1,p225-242 (Jan 2008)

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Tetraspanin family Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR018499

Tetraspanins are a distinct family of proteins, containing four transmembrane domains: a small outer loop (EC1), a larger outer loop (EC2), a small inner loop (IL) and short cytoplasmic tails. They contain characteristic structural features, including 4-6 conserved extracellular cysteine residues, and polar residues within transmembrane domains. A fundamental role of tetraspanins appears to be organizing other proteins into a network of multimolecular membrane microdomains, sometimes called the `tetraspanin web'.

This entry represents tetraspanin proteins. It also recognises a number of peripherins. These are related retinal-specific memebers of the tetraspanin family which are located at the rims of the photoreceptor disks, where they may act jointly in disk morphogenesis [PUBMED:1610568].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Tetraspannin (CL0347), which contains the following 3 members:

CD20 DUF4064 Tetraspannin

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(212)
Full
(4340)
Representative proteomes NCBI
(3981)
Meta
(12)
RP15
(761)
RP35
(1047)
RP55
(1771)
RP75
(2488)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(212)
Full
(4340)
Representative proteomes NCBI
(3981)
Meta
(12)
RP15
(761)
RP35
(1047)
RP55
(1771)
RP75
(2488)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(212)
Full
(4340)
Representative proteomes NCBI
(3981)
Meta
(12)
RP15
(761)
RP35
(1047)
RP55
(1771)
RP75
(2488)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Bateman A & Pfam-B_3109 (Release 7.5)
Previous IDs: transmembrane4;
Type: Family
Author: Bateman A, Finn RD
Number in seed: 212
Number in full: 4340
Average length of the domain: 207.50 aa
Average identity of full alignment: 17 %
Average coverage of the sequence by the domain: 82.23 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 26.0 26.0
Trusted cut-off 26.0 26.0
Noise cut-off 25.9 25.9
Model length: 221
Family (HMM) version: 15
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Tetraspannin domain has been found. There are 4 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...