Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
13  structures 89  species 0  interactions 182  sequences 9  architectures

Family: XRCC1_N (PF01834)

Summary: XRCC1 N terminal domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "XRCC1". More...

XRCC1 Edit Wikipedia article

X-ray repair complementing defective repair in Chinese hamster cells 1

PDB rendering based on 1cdz.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols XRCC1; RCC
External IDs OMIM194360 MGI99137 HomoloGene31368 GeneCards: XRCC1 Gene
RNA expression pattern
PBB GE XRCC1 203655 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 7515 22594
Ensembl ENSG00000073050 ENSMUSG00000051768
UniProt P18887 Q60596
RefSeq (mRNA) NM_006297 NM_009532
RefSeq (protein) NP_006288 NP_033558
Location (UCSC) Chr 19:
44.05 – 44.08 Mb
Chr 7:
24.55 – 24.57 Mb
PubMed search [1] [2]

DNA repair protein XRCC1 also known as X-ray repair cross-complementing protein 1 is a protein that in humans is encoded by the XRCC1 gene. XRCC1 is involved in DNA repair where it complexes with DNA ligase III.

Function[edit]

DNA-repair protein Xrcc1 functions in the repair of single-strand DNA breaks in mammalian cells and forms a repair complex with beta-Pol, ligase III and PARP.[1]

XRCC1 is involved in the efficient repair of DNA single-strand breaks formed by exposure to ionizing radiation and alkylating agents. This protein interacts with DNA ligase III, polymerase beta and poly (ADP-ribose) polymerase to participate in the base excision repair pathway. It may play a role in DNA processing during meiogenesis and recombination in germ cells. A rare microsatellite polymorphism in this gene is associated with cancer in patients of varying radiosensitivity.[2]

Structure[edit]

XRCC1_N
PDB 1xna EBI.jpg
nmr solution structure of the single-strand break repair protein xrcc1-n-terminal domain
Identifiers
Symbol XRCC1_N
Pfam PF01834
Pfam clan CL0202
InterPro IPR002706
SCOP 1xnt
SUPERFAMILY 1xnt

The NMR solution structure of the Xrcc1 N-terminal domain (Xrcc1 NTD) shows that the structural core is a beta-sandwich with beta-strands connected by loops, three helices and two short two-stranded beta-sheets at each connection side. The Xrcc1 NTD specifically binds single-strand break DNA (gapped and nicked) and a gapped DNA-beta-Pol complex.[3]

Interactions[edit]

XRCC1 has been shown to interact with:


References[edit]

  1. ^ Rice PA (September 1999). "Holding damaged DNA together". Nat. Struct. Biol. 6 (9): 805–6. doi:10.1038/12257. PMID 10467087. 
  2. ^ "Entrez Gene: XRCC1 X-ray repair complementing defective repair in Chinese hamster cells 1". 
  3. ^ Marintchev A, Mullen MA, Maciejewski MW, Pan B, Gryk MR, Mullen GP (September 1999). "Solution structure of the single-strand break repair protein XRCC1 N-terminal domain". Nat. Struct. Biol. 6 (9): 884–93. doi:10.1038/12347. PMID 10467102. 
  4. ^ Vidal AE, Boiteux S, Hickson I D, Radicella J P (November 2001). "XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions". EMBO J. 20 (22): 6530–9. doi:10.1093/emboj/20.22.6530. PMC 125722. PMID 11707423. 
  5. ^ Date H, Igarashi Shuichi, Sano Yasuteru, Takahashi Toshiaki, Takahashi Tetsuya, Takano Hiroki, Tsuji Shoji, Nishizawa Masatoyo, Onodera Osamu (Dec 2004). "The FHA domain of aprataxin interacts with the C-terminal region of XRCC1". Biochem. Biophys. Res. Commun. 325 (4): 1279–85. doi:10.1016/j.bbrc.2004.10.162. PMID 15555565. 
  6. ^ a b Gueven N, Becherel Olivier J, Kijas Amanda W, Chen Philip, Howe Orla, Rudolph Jeanette H, Gatti Richard, Date Hidetoshi, Onodera Osamu, Taucher-Scholz Gisela, Lavin Martin F (May 2004). "Aprataxin, a novel protein that protects against genotoxic stress". Hum. Mol. Genet. 13 (10): 1081–93. doi:10.1093/hmg/ddh122. PMID 15044383. 
  7. ^ Marsin Sé, Vidal Antonio E, Sossou Marguerite, Ménissier-de Murcia Josiane, Le Page Florence, Boiteux Serge, de Murcia Gilbert, Radicella J Pablo (November 2003). "Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1". J. Biol. Chem. 278 (45): 44068–74. doi:10.1074/jbc.M306160200. PMID 12933815. 
  8. ^ Schreiber Vé, Amé Jean-Christophe, Dollé Pascal, Schultz Inès, Rinaldi Bruno, Fraulob Valérie, Ménissier-de Murcia Josiane, de Murcia Gilbert (June 2002). "Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1". J. Biol. Chem. 277 (25): 23028–36. doi:10.1074/jbc.M202390200. PMID 11948190. 
  9. ^ a b Fan J, Otterlei Marit, Wong Heng-Kuan, Tomkinson Alan E, Wilson David M (2004). "XRCC1 co-localizes and physically interacts with PCNA". Nucleic Acids Res. 32 (7): 2193–201. doi:10.1093/nar/gkh556. PMC 407833. PMID 15107487. 
  10. ^ Whitehouse CJ, Taylor R M, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko D D, Weinfeld M, Caldecott K W (January 2001). "XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair". Cell 104 (1): 107–17. doi:10.1016/S0092-8674(01)00195-7. PMID 11163244. 
  11. ^ Ewing RM, Chu Peter, Elisma Fred, Li Hongyan, Taylor Paul, Climie Shane, McBroom-Cerajewski Linda, Robinson Mark D, O'Connor Liam, Li Michael, Taylor Rod, Dharsee Moyez, Ho Yuen, Heilbut Adrian, Moore Lynda, Zhang Shudong, Ornatsky Olga, Bukhman Yury V, Ethier Martin, Sheng Yinglun, Vasilescu Julian, Abu-Farha Mohamed, Lambert Jean-Philippe, Duewel Henry S, Stewart Ian I, Kuehl Bonnie, Hogue Kelly, Colwill Karen, Gladwish Katharine, Muskat Brenda, Kinach Robert, Adams Sally-Lin, Moran Michael F, Morin Gregg B, Topaloglou Thodoros, Figeys Daniel (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931. 
  12. ^ Wang L, Bhattacharyya Nandan, Chelsea Diane M, Escobar Pedro F, Banerjee Sipra (November 2004). "A novel nuclear protein, MGC5306 interacts with DNA polymerase beta and has a potential role in cellular phenotype". Cancer Res. 64 (21): 7673–7. doi:10.1158/0008-5472.CAN-04-2801. PMID 15520167. 
  13. ^ Kubota Y, Nash R A, Klungland A, Schär P, Barnes D E, Lindahl T (Dec 1996). "Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein". EMBO J. 15 (23): 6662–70. PMC 452490. PMID 8978692. 
  14. ^ Bhattacharyya N, Banerjee S (July 2001). "A novel role of XRCC1 in the functions of a DNA polymerase beta variant". Biochemistry 40 (30): 9005–13. doi:10.1021/bi0028789. PMID 11467963. 
  15. ^ Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (June 1998). "XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage". Mol. Cell. Biol. 18 (6): 3563–71. PMC 108937. PMID 9584196. 

Further reading[edit]

External links[edit]

This article incorporates text from the public domain Pfam and InterPro IPR002706

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

XRCC1 N terminal domain Provide feedback

No Pfam abstract.

Literature references

  1. Rice PA; , Nat Struct Biol 1999;6:805-806.: Holding damaged DNA together. PUBMED:10467087 EPMC:10467087

  2. Marintchev A, Mullen MA, Maciejewski MW, Pan B, Gryk MR, Mullen GP; , Nat Struct Biol 1999;6:884-893.: Solution structure of the single-strand break repair protein XRCC1 N- terminal domain. PUBMED:10467102 EPMC:10467102


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR002706

DNA-repair protein Xrcc1 functions in the repair of single-strand DNA breaks in mammalian cells and forms a repair complex with beta-Pol, ligase III and PARP [PUBMED:10467087]. The NMR solution structure of the Xrcc1 N-terminal domain (Xrcc1 NTD) shows that the structural core is a beta-sandwich with beta-strands connected by loops, three helices and two short two-stranded beta-sheets at each connection side. The Xrcc1 NTD specifically binds single-strand break DNA (gapped and nicked) and a gapped DNA-beta-Pol complex [PUBMED:10467102].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(3)
Full
(182)
Representative proteomes NCBI
(163)
Meta
(1)
RP15
(39)
RP35
(46)
RP55
(72)
RP75
(107)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(3)
Full
(182)
Representative proteomes NCBI
(163)
Meta
(1)
RP15
(39)
RP35
(46)
RP55
(72)
RP75
(107)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(3)
Full
(182)
Representative proteomes NCBI
(163)
Meta
(1)
RP15
(39)
RP35
(46)
RP55
(72)
RP75
(107)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: SWISS-PROT
Previous IDs: none
Type: Domain
Author: Bateman A
Number in seed: 3
Number in full: 182
Average length of the domain: 131.20 aa
Average identity of full alignment: 46 %
Average coverage of the sequence by the domain: 23.24 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.7 20.7
Trusted cut-off 20.8 21.1
Noise cut-off 18.8 20.4
Model length: 153
Family (HMM) version: 11
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the XRCC1_N domain has been found. There are 13 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...